Syntax

Assume an infinite set $X$ of variables denoted by $x,y,z,\ldots$, then the set of $\lambda$-terms is the least set satisfying:

$\displaystyle M::=X\vert(\lambda X.M) \vert (MM)
$

Which are called variable, abstract, and application.

Examples:

  $\displaystyle x$ (3)
  $\displaystyle (\lambda y.y)$ (4)
  $\displaystyle (\lambda x.(\lambda y.x))$ (5)
  $\displaystyle ((\lambda z.z)(\lambda y.y))$ (6)

An intuition:

$\displaystyle f$ $\displaystyle : x,y \to x + y$ (7)
$\displaystyle f$ $\displaystyle : x \to \lambda y.x + y$ (8)
$\displaystyle f$ $\displaystyle \to \lambda x.\lambda y.x + y$ (9)